		_	
^	п	\sim 1	nem
Д	\boldsymbol{r}	· r	14TT1

Name			

Date	Per	

Oxidation Reduction Practice Quiz (Chapter 4.9 and 4.10)

1	. In	which	of the	following	does	nitrogen	have	an	oxidation	state	of	+4?

- a) HNO₃
- b) NO₂
- c) N₂O
- d) NH₄Cl e) NaNO₂
- 2. Which of the following statements is *not* true?
- a) When a metal reacts with a nonmetal, an ionic compound is formed.
- b) A metal-nonmetal reaction can always be assumed to be an oxidation-reduction reaction.
- c) Two nonmetals can undergo an oxidation-reduction reaction.
- d) When two monmetals react, the compound formed is ionic.
- e) A metal-nonmetal reaction involves electron transfer.
- 3. In the reaction $2Ca(s) + O_2(g) \rightarrow 2CaO(s)$, which species is oxidized?
- a) O₂
- b) O2-
- c) Ca
- d) Ca2+
- e) none of these
- 4. In the reaction

$$2Cs(s) + Cl_2(g) \rightarrow 2CsCl(s), Cl_2$$
 is

- a) the reducing agent.
- b) the oxidizing agent.
- 5. In the reaction

$$N_2(g) + H_2(g) \rightarrow 2NH_3(g), N_2$$
 is

- a) oxidized.
- b) reduced.
- 6. In the reaction

$$P_4(s) + 10 Cl_2(g) \rightarrow 4PCl_5(s)$$
, the reducing agent is

- a) chlorine
- b) PCI₅
- c) phosphorus
- e) none of these
- 7. In the reaction

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 carbon is ____.

- a) the reducing agent
- b) the electron acceptor
- c) reduced
- d) the oxidizing agent
- e) more than one of these

8. Consider the following oxidation-reduction reaction:

Fe
$$^{3+}$$
 + I^{-} \rightarrow Fe $^{2+}$ + I_{2}

In the balanced equation, the coefficient of Fe ²⁺ is a) 1. b) 2. c) 3. d) 4. e) none of these

9. Given the following reaction in acidic media:

$$Fe^{2+} + Cr_2O_7^{2-} \rightarrow Fe^{3+} + Cr^{3+}$$

The coefficient for water in the balanced reaction is a) 1. b) 3. c) 5. d) 7. e) none of these

10. The following unbalanced equation represents a reaction that occurs in basic solution:

$$MnO_4^2$$
 + $C_2O_4^2$ \rightarrow MnO_2 + CO_3^2

How many moles of MnO_4^2 are required to produce 1 mole of CO_3^2 ? a) 4. b) 3. c) 2. d) 1. e) none of these

11. When the following reaction is balanced in acidic solution, what is the coefficient of I₂?

$$IO_3$$
 + I \rightarrow I_2

a) 1 b) 2 c) 3 d) 4 e) 5

12. The MnO₄ ion is often used to analyze for the Fe²⁺ content of an aqueous solution via the reaction of

$$MnO_4$$
 + $Fe^{2+} \rightarrow Fe^{3+} + Mn^{2+}$ in acidic solution.

What is the ratio of MnO_4 : Fe^{2+} in the balanced equation? a) 1: 1 b) 1: 2 c) 1: 3 d) 1: 4 e) 1: 5

13. Balance the following oxidation-reduction reaction:

$$Cr_2O_7^2 + I_2 \rightarrow Cr^{3+} + IO_3^{-1}$$

In the balanced equation, the coefficient of water is: a) 4 b) 17 c) 11 d) 7 e) 6

Balance each of the following equations:

14.
$$C_3H_5(NO_3)_3 \rightarrow N_2 + CO_2 + H_2O + O_2$$

15.
$$KI + HNO_3 \rightarrow KNO_3 + NO + I_2 + H_2O$$

16.
$$\operatorname{Cr_2O_7^{2^-}} + \operatorname{I}^- \to \operatorname{Cr}^{3+} + \operatorname{IO_3}^-$$
 (acid)

$$17. \hspace{1.5cm} Zn \hspace{0.1cm} + \hspace{0.1cm} As_2O_3 \hspace{0.1cm} \rightarrow \hspace{0.1cm} AsH_3 \hspace{0.1cm} + \hspace{0.1cm} Zn^{\hspace{0.1cm} 2\hspace{0.1cm} +} \hspace{0.1cm} (acid)$$

18.
$$MnO_4^{-1} + Br^{-1} \rightarrow MnO_2 + BrO_3^{-1}$$
 (base)

19.
$$Bi(OH)_3 + SnO_2^2 \rightarrow Bi + SnO_3^2$$
 (base)

Answers

- 1. b
- 2. d
- 3. c
- 4. b
- 5. b
- 6. c
- 7. a
- 8. b
- 0. .
- 9. d
- 10. e
- 11. c
- 12. e
- 13. b
- $14.4, \rightarrow 6, 12, 10, 1$
- 15. 6, 8, \rightarrow 6, 2, 3, 4
- $16.~8H^{\scriptscriptstyle +},\,1,\,1,\,\rightarrow\,2,\,1,\,4H_2O$
- 17. $12H^+$, 6, 1, \rightarrow 2, 6, $3H_2O$
- 18. H_2O , 2, 1, \rightarrow 2, 1, 2 OH^-
- 19. 2, 3, \rightarrow 2, 3, 3H₂O